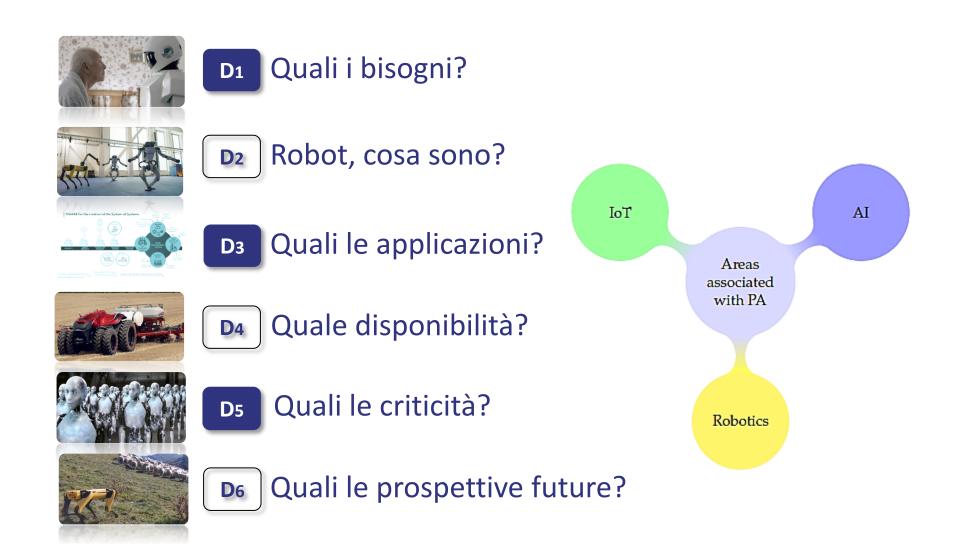
HORTO

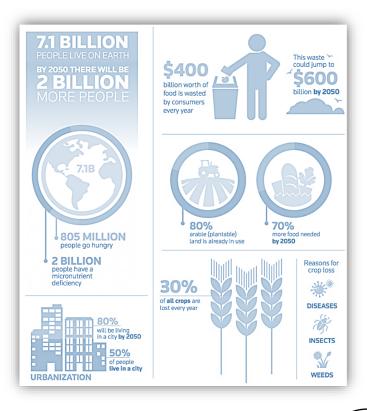
—— From research to field ——

Everyday at the side OF THE FARMER

Digitalizzazione e sostenibilità in viticoltura e olivicoltura. Il futuro dell'imprenditore digitale



La robotica in agricoltura



Un settore in trasformazione

Crescita della popolazione

Aumento della richiesta di prodotti agricoli

Riduzione della manodopera

Maggiore sicurezza sul lavoro

Cambiamento climatico

Maggiore Tutela ambientale

Robot

Mastcam-Z
Zametal Process Convers

SuperCam

S

Robot: macchina programmabile, con sensori e attuatori, che può muovere/spostare cose nel mondo o eseguire lavorazioni specifiche senza il controllo continuo dell'uomo. Fonte: (SIRI) (Associazione Italiana Robotica Industriale).

robot non autonomo

robot autonomo

farmbot

Sparrow, R. (2020). Robotics. In H. LaFollette (Ed.), International encyclopedia of ethics. Malden, MA: John Wiley & Sons...

Stato dell'arte

I farmbot attualmente sviluppati:

80%

In fase di ricerca/sperimentazione

37%

La maggior parte presentano una locomozione a 4 ruote motrici

64%

La maggior parte non presentano bracci robotici

Classificazione delle principali applicazioni robotiche in agricoltura:

- 1. Preparazione del terreno prima della semina/trapianto
- 2. Semina/trapianto
- 3. Operazioni colturali
- 4. Stima della resa e la fenotipizzazione
- 5. Raccolta

1. Preparazione del terreno prima della semina/trapianto

Robots	Locomotion System	Final Application	Navigation Sensors	Obstacle Detection Sensors	Development Stage	Year
Cäsar [21]	4WD	Orchard or vineyard	RTK GNSS	Ultrasonic sensor	Commercial	2014
Greenbot [24]	4WS	Horticulture, fruit and arable farming	RTK GPS	TK GPS Bump sensor		2015
AGRAS MG-1P [25]	UAV Octocopter	Rice, soy and corn	RTK GPS, RGB camera, gyroscope, accelerometer and compass	Omnidirectional radar	Commercial	2016
AgBot [23]	2WD	Corn	RTK GPS, RGB camera, compass and accelerometer	-	Research	2017

Cäsar

2. Semina/trapianto

Robots	Locomotion System	Final Application	Guidance Sensors	Seeding Mechanism	Development Stage	Year
Lumai-5 [28]	4WS	Wheat	Angle and speed	Seeding motor and vacuum fan	Research	2010
Di-Wheel [29]	2WD	Horticulture in general	Smartphone embedded sensors	Roll type seeder	Research	2015
Sowing robot 1 [30]	4WD	Com	Ultrasonic	Linear actuator and vacuum motor	Research	2016
Sowing robot 2 [31]	Track	Seeds in general	Ultrasonic and magnetometer	Solenoid actuator	Research	2016

Lunar - 5

Operazioni colturali

Task	Robots	Locomotion System	Final Application	Location Sensors	Sensors Used to Perform the Task	Computer Vision Algorithms
Disease	Disease robot [36]	Not included	Bell pepper	-	RGB camera and laser	PCA and CV
identification	eAGROBOT [37]	4WD	Cotton and groundnut	-	RGB camera	K-means and Neural Networks
	Weeding robot 1 [38]	4WD	Broccoli and lettuce Cotton, sow	-	RGB-D camera	RANSAC
	AgBot II [40]	4WS	thistle, feather top rhodes grass and wild oats	-	RGB camera	LBP
	Oz [41]	4WD	Vegetables, nurseries, and horticulture	LiDAR	RGB camera	-
Mechanical	Dino [42]	4WS	Vegetables in row and on beds	RTK/GPS	RGB camera	-
weeding	Ted [43] VITIROVER [44]	4WS 4WD	Grape Soil grass	RTK/GPS RTK/GNSS	RGB camera	_
	Tertill [45]	4WD	Residential gardens	-	Capacitive sensors	-
	K-Weedbot [46]	4WS	Paddy field	RGB camera	_	Hough transform
	AIGAMO-ROBOT [47]	Track	Paddy field	_	_	-
	Weeding robot 2 [48]	4WD	Paddy field	Capacitive and azimuth sensors	_	_
	Weeding robot 3 [49]	Boat	Paddy field	GPS and IMU	-	-
	AgriRobot [50]	4WD	Grape	RGB camera and LiDAR	-	FDA and GDA
	SAVSAR [50]	4WD	Grape	RGB camera and LiDAR	-	FDA and GDA
	Robotic sprayer [51]	4WD	Grape	RGB camera and laser	-	FDA and GDA
C1 1	RIPPA [52]	4WS	Lettuce, cauliflower and broccoli	RTK/GPS/INS and LiDAR	Hyperspectral and thermal cameras	ExG-ExR
Chemical weeding	LadyBird [53]	4WS	Lettuce, cauliflower and broccoli	RTK/GPS/INS and LiDAR	Hyperspectral and thermal cameras	ExG-ExR
	BoniRob [54]	4WS	Sugar beet	-	RGB, NIR cameras and ultrasonic sensor	CNN
	Aerial robot [56]	UAV (Octocopter)	Grape	GPS and IMU	Multispectral camera	NDVI
	Bly-c-agri [60]	UAV (Hexacopter)	Grape	GNSS	-	-
Pollination	Pollinator robot [62]	4WD	Kiwi	Odometry	RGB camera	CNN
Pruning	Pruning robot 1 [65]	Mobile plataform	Grape	-	RGB camera	SVM
. runing	Pruning robot 2 [66]	Mobile plataform	Grape	-	RGB-D camera	Faster R-CNN
	Swagbot [55]	4WS	General farms	GPS and LiDAR	RGB-D, IR and hiperspectral cameras	NDVI
General purpose	Thorvald II [67]	Many forms	General farms	Depends on the application	Depends on the application	Depends on the application
	Clearpath robots [68]	Many forms	General farms	Depends on the	Depends on the	Depends on the
	AgroBot [69]	4WD	General farms	application	application	application

Ted

Bly-c-agri

VITIROROVER

Sitia

Robotic sprayer

Pruning

4. Stima della resa e la fenotipizzazione.

Task	Robot	Final Application	Location Sensors	Sensors Used to Perform the Task	Computer Vision Algorithm
	Shrimp [90]	Apple	-	RGB camera	MLP and CNN
	VINBOT [91]	Grape	RTK, DGPS and LiDAR	RGB and NIR cameras	NDVI
Yield Estimation	VineRobot [92]	Grape	-	FA-Sense LEAF, FA-Sense ANTH, ultrasonic and RGB camera	Chlorophyll-based fluorescence and RGB machine vision
	AgriBOT [93]	Orange and sugar cane	GPS/INS and LiDAR	RGB camera	-
	Agrob V14 [96]	Grape	LiDAR	RGB camera	SVM
	Agrob V16 [98]	Grape	RTK/GPS/INS and LiDAR	Stereo, RGB-D and RGB cameras	hLBP and SVM
	Hexapod [99]	General farms	-	CO_2 gas module, anemoscope and infrared distance	-
	Kubota farm vehicle [101]	Grape	GPS and IMU	sensor LiDAR	Continuous-Time SLAM
	TerraSentia [100]	Corn	RTK/GPS and LiDAR	RGB camera	LiDAR-based navigation
Dharataria	Vinobot [102]	Corn	DGPS and LiDAR	Stereo camera and environmental sensors	VisualSFM
Phenotyping	Vinoculer [103]	Corn	-	Stereo RGB and IR cameras and air temperature sensors	VisualSFM
	Pheno-Copter [104]	Sorghum, sugarcane and wheat	-	RGB and thermal cameras and LiDAR	RANSAC and DEM
	Ara ecoRobotix [105]	General farms	RTK/GPS and compass	RGB camera	-

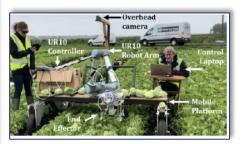
VINBOT

VineScout

VineRobot

Vinoculer

Vinobot



5. Raccolta

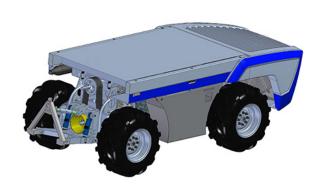
Robot	Robotic Arm	Final Application	Location Sensors	Sensors Used to Perform the Task	Computer Vision Algorithm	Success Rate (Cycle Time)
Agrobot E-Series [75]	24 Cartesians arms	Strawberry	LiDAR	RGB camera, ultrasonic and inductive sensors	-	-
Berry 5 [76]	Multiple robotic components	Strawberry	GPS and LiDAR	RGB camera	-	-
GARotics [77]	Pneumatic cylinder with two blades	Green asparagus	-	RGB-D camera	RANSAC and euclidean clustering	90% (2 s)
Vegebot [78]	6-DoF and a custom end effector	Lettuce	-	RGB camera	R-CNN	88.2% (31.7 s)
Noronn AS [79]	5-DoF	Strawberry	_	RGB-D camera	R-CNN	74.1%
Harvester robot 1 [80]	6-DoF dual-arm	Aubergines	-	RGB-D and ToF cameras	SVM	91.67% (26 s)
Harvester robot 2 [81]	3-DoF cartesian dual-arm	Strawberry	LiDAR and encoder	RGB-D camera	HSV color-thresholding	50–97.1% (4.6 s)
Harvester robot 3 [82]	6-DoF soft-finger based gripper	Apple	-	RGB-D camera	Dasnet, 3D-SHT and Octree	F ₁ : 0.81 (7 s)
Harvester robot 4 [83]	6-DoF	Strawberry	-	RGB and laser sensors	R-YOLO	84.35%
Harvey plataform [84]	6-DoF	Sweet pepper	-	RGB-D camera, pressure and separation sensors	DCNN	76.5% (36.9 s)
SWEEPER [85]	6-DoF with custom designed end effector	Sweet pepper	-	RGB-D camera	Deep learning, shape, color-based detection and HT	61% (24 s)
Amaran [87]	4-DoF	Coconut	_	RGB camera	-	80–100% (21.9 min)

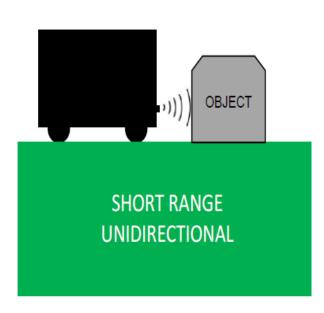
Harvey plataformly

Vegebot

<u>Cäsar</u>

Cäsar: Robot per la concimazione e aratura. Sviluppato dalla società tedesca Raussendorf, nel 2014. In commercio.




<u>Sistema di controllo/governo</u>: presenta un computer di bordo

Sistema di Navigazione:

- A. Controllata da remoto (radio-comandato)
- B. sistema di posizionamento RTK /GPS
- C. sistema di rilevamento ad ultrasuoni

Locomozione: 4 ruote motrici (4WD)

TED

TED : robot scavallante per diserbo meccanico di precisione per vigneti Sviluppato dalla società francese Naio Tecnologies, nel 2017.

In commercio.

<u>Locomozione</u>: 4 ruote sterzanti (4WS)

Sistema di Navigazione:

A. sistema di posizionamento RTK /GPS

i. tecnologie di local perception:

sistema di rilevamento ad ultrasuoni

RGB camera (ricostruiscono il vigneto in 3D)

Light Detection and Ranging (laser tipo Lidar)

Sistema di controllo/governo: presenta un computer di bordo

Tecnologie per lo svolgimento del task: RGB camera

<u>Alimentazione</u>: Elettrica <u>Peso</u>: 1 tonnellata circa

(d) Oz [41].

(e) Dino [42].

(f) Ted [43].

SAVSAR: robot semiautonomo per i trattamenti in vigneto

Progetto cofinanziato dalla "Cooperazione bilaterale S&T della Grecia Israele 2013-2015" del Segretariato generale per

la ricerca e la tecnologia

Sistema di controllo/governo

- interfaccia uomo-macchina
- un computer di bordo permette sia una modalità autonoma che semi-autonoma

Sistema di navigazione:

- GPS, IMU (individuazione del target)
- Sensori di locomozione:
 - o LiDAR (identificazione dell'ambiente)
 - o RGB camera

<u>Locomozione</u>: 4 ruote motrici

<u>Tecnologie per lo svolgimento del task</u>:

- Camera: RGB, camere per la visione periferica
- Sistemi LiDAR
- Braccio robotico: Open Unit Robot (OUR-1)
 - manipolatore a 6 giunti e 6 GDL, comprende la base del robot, 1 spalla, 1 gomito e 3 giunzioni a polso
 - Input per il controllo remoto: tastiera e Sony PS3 Gamepad

Sistema di controllo/governo

- interfaccia uomo-macchina
- un computer di bordo permette sia una modalità di navigazione autonoma che semi-autonoma

Alimentazione: elettrica, batteria con autonomia 5 ore

Vinescout

<u>VineScout</u>: robot per la raccolta dati in vigneto in tempo reale.

Indicherà quando attivare l'irrigazione, la data della raccolta delle uve e la distribuzione delle piante più produttive nel vigneto.

Sviluppato da progetto finanziato dal programma europeo Horizon 2020 In fase di test

<u>Sistema di controllo/governo</u>: presenta un computer di bordo <u>Sistema di Navigazione</u> :

- attraverso tecnologie di local perception:
 - i. Immagini 3D
 - ii. Sensori ad ultrasuoni
 - iii. Multi-beam Lidar con sensori time-of-flight

<u>Locomozione</u>: 4 ruote

<u>Tecnologie per lo svolgimento del task:</u>

- Sensori multispettrali: elaborazione indici NDVI (valuta vigore vegetativo, grado di maturità delle uve)
- Sensori termici: valutano il grado di stress idrico
- Software per la ricostruzione 3D del vigneto da telecamere RGB (ricostruiscono il vigneto in 3D)

Alimentazione: elettrica e autonoma

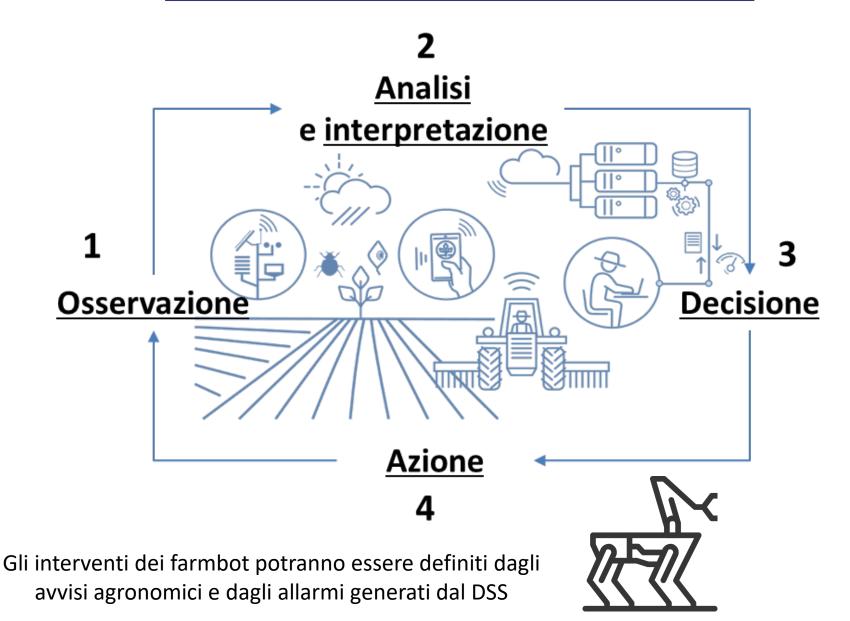
garantiscono energia per almeno una giornata lavorativa.

Robotica applicata all'agricoltura UCSC - IIT

Accordo di collaborazione UCSC - IIT:

- Sviluppare una ricerca fortemente innovativa nell'ambito della robotica applicata all'agricoltura;
- Realizzare robot per il monitoraggio e la gestione di sistemi colturali.

Progetto "Vinum", 2017.


È la prima attività di ricerca congiunta tra Cattolica e IIT con lo scopo di realizzare un prototipo di robot in grado di eseguire la **potatura invernale della vite** simulando le operazioni manuali selettive realizzate dall'uomo.

Laboratorio di robotica UCSC, 2021.

DSS: integratore di tecnologie

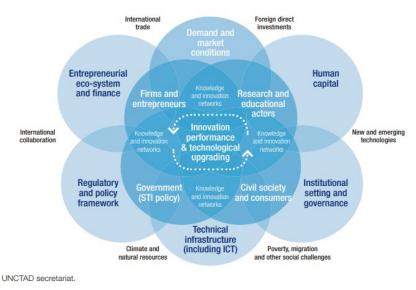
Criticità e Sviluppi futuri

Criticità attuali della robotica in agricoltura:

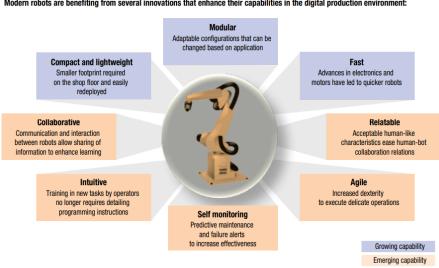
1. Tecnologiche:

- Sistema di locomozione
- Sensori e navigazione
- Elaboratori degli algoritmi di visione

2. **Economiche**


- Costi delle tecnologie
- Flessibilità costo/opportunità dei farmbot

3. **Normative**


- Diritti di utilizzo dei dati
- Licenze e patenti

4. Sociali

- Digital divide
- Percezione legate ai robot

Modern robots are benefiting from several innovations that enhance their capabilities in the digital production environment:

Source: International Federation of Robotics, World Robotics: Industrial Robots 2015

HORTO

—— From research to field ——

Everyday at the side OF THE FARMER

Digitalizzazione e sostenibilità in viticoltura e olivicoltura. Il futuro dell'imprenditore digitale

